Environmental Protection Division

Work Session

Septic Tank Workgroup Subgroup C - Existing Septic Tank Upgrades

August 30, 2022

- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary

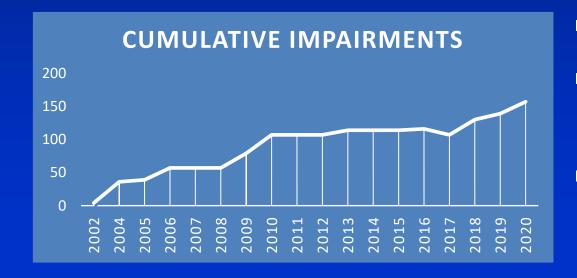
- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary

Subgroup C – Purpose

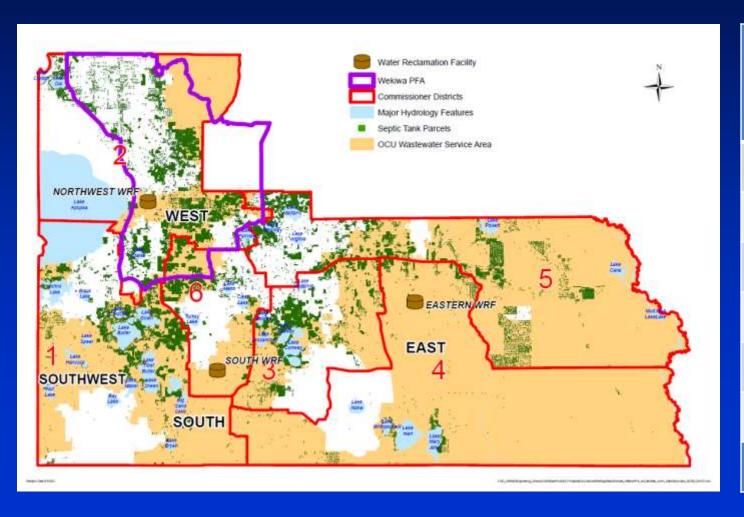
- Septic tanks can provide safe, cost-effective wastewater treatment
 - Used in rural areas or where centralized sewer systems are not available
 - Should be located a safe distance from water bodies and groundwater
- Demonstrate how upgrading existing septic tanks can help reduce nutrient loading in vulnerable areas
- The Septic Tank Workgroup was created to address appropriate use of septic tanks
 - Subgroup A is evaluating new development connections to central sewer
 - Subgroup B is evaluating existing septic-to-sewer connections
 - Subgroup C is evaluating existing septic tank upgrades
 - Subgroup D is evaluating new septic tank standards and permitting

- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary

Orange County's Water Resources


- Over 600 named lakes
- 12 major drainage basins (9 river systems)
- Wekiwa & Rock Springs (Outstanding Florida Springs)
- Wekiva River (1 of 2 Wild & Scenic Rivers in Florida)
- Econlockhatchee River (OFW)
- Headwaters of Everglades
 - Butler Chain of Lakes (OFW)
 - Hart Branch and Shingle, Boggy, Cypress, Reedy Creeks

- Natural water quality throughout the region is impaired by nutrients
- Excess nutrients cause overabundance of algae
- Algae can adversely affect the environment

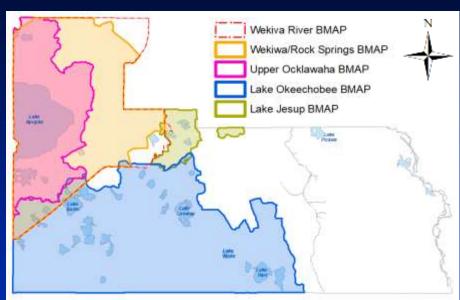


- Reduce nutrient loading
- Reduce number of surface waters impaired by nutrients
- Reduce future financial liabilities surface waters in accordance with TMDL/BMAP requirements

Background

Septic Tank Parcels in Orange County

District	Orange County	OCU & Wekiwa PFA	OCU outside PFA
1	13,973	0	12,890
2	29,784	14,000	585
3	15,623	0	11,426
4	2,419	0	2,412
5	19,404	22	8,541
6	11,088	3,740	6,025
Total	92,211	17,762	41,879



BMAPs

- Septic Upgrades as Potential Strategy for BMAPs
- Wekiwa requires upgrades/sewer within PFA
 - Highest sources of nitrogen from septic and fertilizer
- Clean Waterways Act (SB 712, 2020)
 - Incorporate Wastewater and On Site Treatment
 and Disposal Systems (OSTDS) Plans into nutrient BMAPs by July 1, 2025
 - Inventory and develop projects to address septic within jurisdiction of local governments

■ FDEP Developed OSTDS TAC Committee

 Recommendations (Dec 2021) – State will consider these recommendations when making rule updates

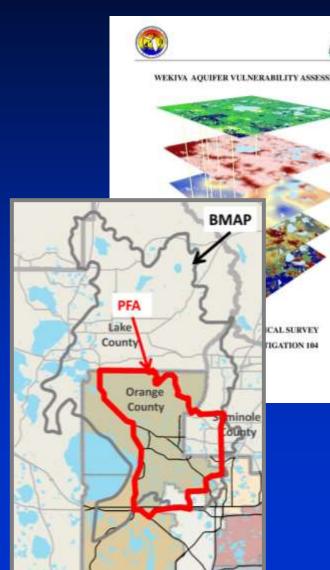
- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary

PEDS

- -Environmental Protection Division (lead)
- Neighborhood Services Division
- Public Works
 - —County Engineer
 - Development Engineering Division
- Utilities
 - Deputy Director
 - -Utilities Engineering Division
- Florida Department of Health in Orange County

Objectives/Scope

- Conduct modeling to identify vulnerable areas
- Identify areas where upgrade may be required
- Several technologies are available standards for upgrading systems (feasibility)
- Issues related to implementation
- Identify funding sources to incentivize homeowners to upgrade
- Recommend policy changes



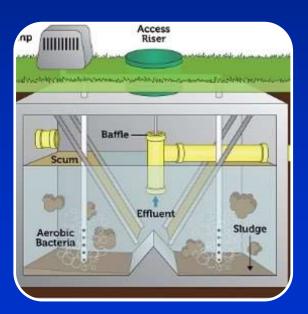
Vulnerability Assessment & Feasibility Studies

Groundwater Vulnerability Study

- Identify areas of vulnerability throughout the County
- Using scientific models and methods
- Identify PFAs based on more vulnerable areas and practical considerations
 - Areas where new conventional septic systems will not be allowed and existing conventional septic systems should be phased out over time
- Feasibility Studies
 - Prioritize areas for sewer
 - Identify septic upgrade areas

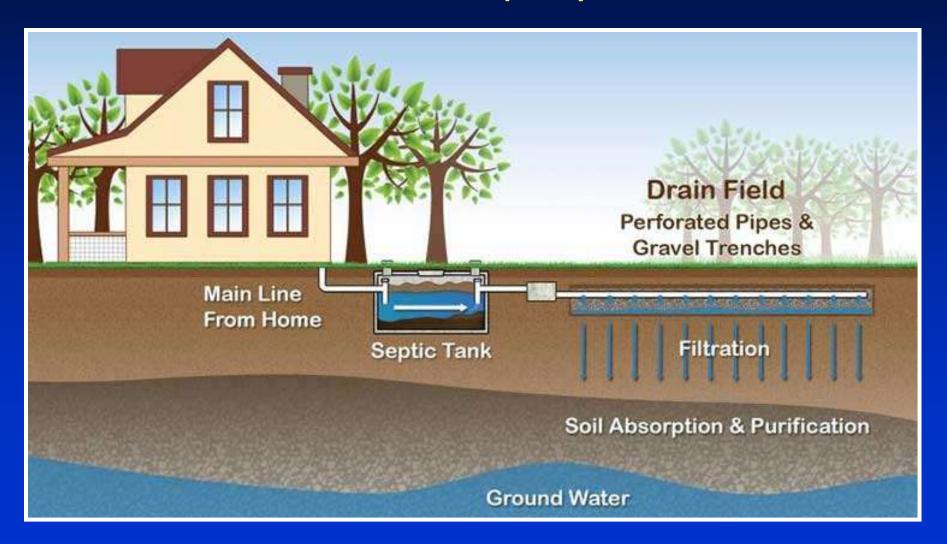
Vulnerability Assessment & Feasibility Studies

Identify Vulnerable Areas (PFAs)

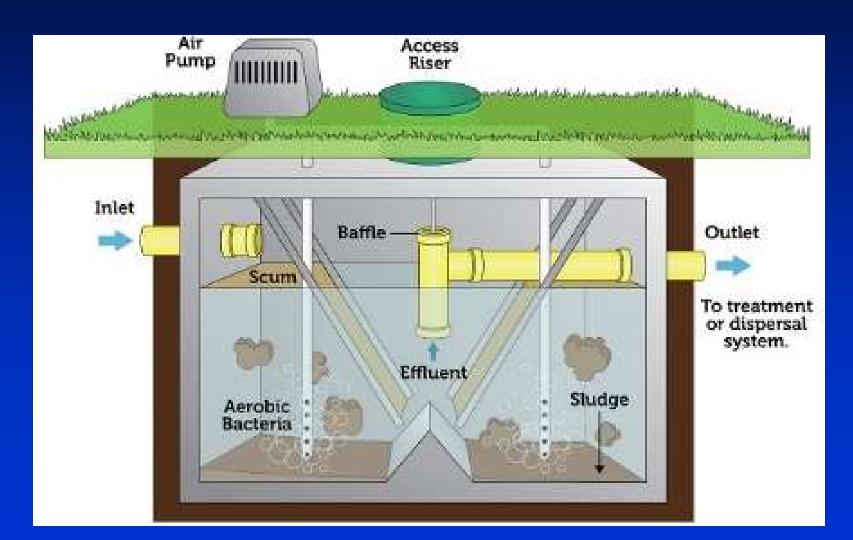

Determine Areas
Where Connection
to Central Sewer is
Feasible

Determine Areas
Where Septic
Systems Upgrades
are Feasible

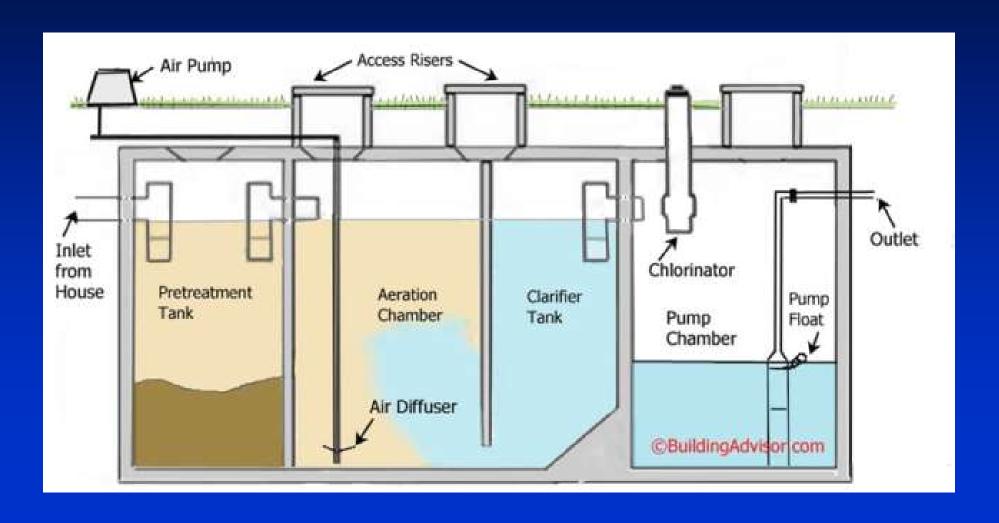
Vulnerability Assessment


- Identify vulnerable areas where upgrades may be required
 - —More Vulnerable Top priority for septic to sewer connection or septic upgrades
 - Consider conducting feasibility studies for septic to sewer connection (Subgroup B)
 - Consider conducting feasibility studies for septic tank upgrades (Subgroup C)
 - Vulnerable Second tier priority for septic to sewer connection or septic upgrades, if adequate resources available
 - Less Vulnerable Conventional septic tanks do not pose a significant concern

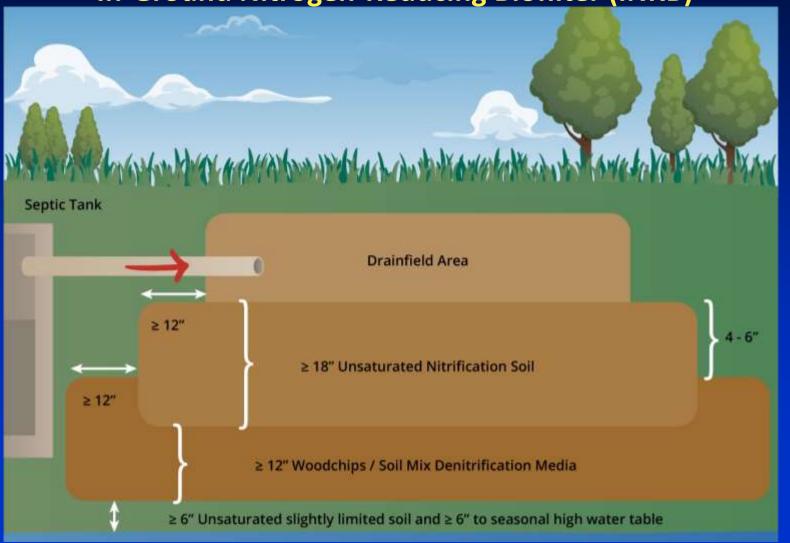
- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary



Conventional Septic System



Nitrogen-Reducing Aerobic Treatment Unit (ATU)



Performance Based Treatment System (PBTS)

In-Ground Nitrogen-Reducing Biofilter (INRB)

		Annual O&M	
Type of System	Capital Cost	Cost	Other Issues
Conventional	\$8,000-\$15,000	\$100	No electricity required
Aerobic Treatment Unit	\$15,000-\$25,000	\$400-\$1,150	Electricity required
Performance Based Treatment System	\$18,000-\$30,000	\$400-\$1,150	Electricity required Engineered by P.E.
In-Ground Nitrogen- Reducing Biofilter	≥\$10,000	\$100	No electricity required

- 62-6, FAC FDOH/FDEP Standards for Onsite Sewage Treatment and Disposal Systems
 - -Rulemaking to revise the regulations has begun
 - Aerobic Treatment Units (ATU) NSF 245 (Nitrogen-Reducing) certified
 systems FDEP/FDOH maintains approved list
 - -Performance Based Treatment Systems (PBTS) must be designed by a P.E.
 - -Passive nitrogen reducing systems (INRB) specific design requirements
 - Verified during permitting process by FDOH
- Identify what standards will be adopted by Orange County
 - Incentives vs. requirements and enforcement procedures

- Systems that require electricity cease functioning when power goes out
- Additional maintenance requirements and costs vs. traditional septic systems
- Failure to maintain may impact water quality as much as if traditional septic were in place
 - -FDOH requires 3rd party maintenance agreement during permitting
- Effectiveness for phosphorus removal not determined yet

- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary

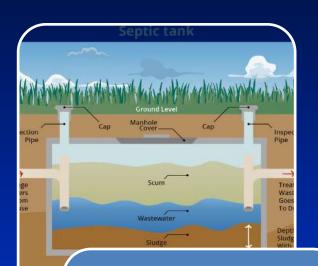
Policy Development/Funding Sources

More Vulnerable Areas

- Require advanced nitrogen treatment for septic systems in new developments for lots <1 acre in size (Septic Subgroup A)
- Septic to sewer feasibility studies (Septic Subgroup B)
 - -Will require prioritization
 - -To be completed by County (state funding not anticipated)
- Require failing conventional septic systems to upgrade to advanced treatment

Other Policy Considerations

- Timing for implementation
- Effect on septic tank industry and property owners
- Operating agreement between FDOH/FDEP and Orange County
 - -FDOH is the permitting authority under the auspices of FDEP
 - -FDOH in Orange County implements state requirements
 - Operating agreement needed for FDOH to implement local requirements that vary from state requirements
 - -FDOH may request funding to implement local requirements

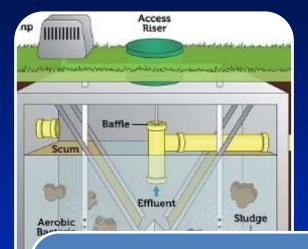

Identify Funding Sources for Upgrades

- Identify Funding Sources to Incentivize Homeowners to Upgrade
 - —Grants from FDEP or WMDs
 - Septic Upgrade Incentive Pilot Program: \$7,000 for 22 homes in Wekiwa PFA
 - Outside of Wekiwa PFA Competitive grant funding may be available
 - Estimated Cost to Upgrade
 - Consider using County General Fund resources as a strategy to meet BMAP requirements

Identify Funding Sources for Upgrades

Wekiwa PFA and in OCU Service Territory

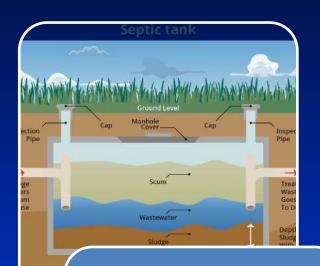




Conventional Septic Systems

- 17,762 total
- 16,096 on lots less than 1 acre

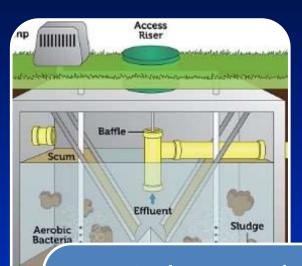
- 4,720 (29%)
- \$354 million (total)
- Up to 25% (OCU)


Remainder must be Upgraded to Enhanced Treatment

- 11,376 parcels < 1 acre in size (71%)
- \$228 million (total)
- \$80 million (incentive)

Identify Funding Sources for Upgrades

Outside Wekiwa PFA and in OCU Service Territory



Conventional Septic Systems

- 41,879
- # in PFAs TBD

- # TBD
- \$40K-\$75K per system
- OCU = up to 25% per ordinance

Remainder must be Upgraded to Enhanced Treatment

- # TBD
- \$10K-30K per system
- Potential incentive = \$7K per system

Policy Development/Funding Options Stakeholders

- Policy Makers (Orange County BCC)
- State Agencies (FDEP, FDOH, SJRWMD, SFWMD)
- Municipalities
- Septic Tank Industry (equipment vendors, installers, maintenance entities, Florida Onsite Wastewater Association)
- Development Industry (residential, commercial, contractors, builders, engineers, attorneys)
- Environmental Groups
- Orange County Residents, Homeowners, and Visitors

- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary

Next Steps

- Complete Vulnerability Assessment Study
- Complete Feasibility Studies for more vulnerable areas
- Stakeholder engagement (including advisory boards)
- Work Session and Public Hearings with Board regarding policy direction and ordinance updates
- Seek grant funding opportunities
- Evaluate costs and budget resources to implement septic upgrade incentive program
- Negotiate agreement with FDEP/FDOH

- Purpose
- Background
- Subgroup C Details
- Septic Upgrade Options
- Policy Development/Funding Options
- Next Steps
- Summary

- Nutrient water quality impairments are increasing and septic systems are a large source
- Conventional septic systems provide safe, effective sewage treatment in appropriate locations
- Advanced nitrogen treatment systems are available for areas with water quality concerns
- Subgroup C addresses existing septic tanks impacting water quality
- Both connecting to sanitary sewer and upgrading septic involves additional costs for homeowners and other potential concerns